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Abstract

DNA microarray technology has emerged to the forefront of gene expression analysis asa
tool by which researchers can detect genome-wide differential expression of thousands of
genes. Recent interest in identifying transcription signature patterns has led to an increase
in the use of microarray technology to simultaneously analyze, monitor and characterize
changes in gene expression profiles in response to serum induction, cell cycle changes,

cellular processes, genotoxic stress and oncogenesis.

The Nationa Institute of Environmental Health Sciences Microarray Center (NMC) is
combining the fields of toxicology and genomics to better understand mechanistic based
risk assessment, predictive toxicology and hazard identification of a variety of
compounds. This new sub-discipline, termed toxicogenomics, stems from the use of
high-density microarray technology and toxicology to measure changes in gene
expression patterns that are different in biological models following exposure to toxic
agents. Essential to this effort are bioinformatics, computational biology and statistical
analysis which lend the biological informatics resources, robust computing power and
mathematical methodologies to confidently correlate gene expression profiles of
unknown agents with the signature patterns of known toxicants to ultimately link gene

expression information with toxicol ogical endpoints.



In order to discern whether a specific signature pattern for a class of compounds could be
elucidated, microarray gene expression data were generated from analysis of liver
samples from Sprague-Dawley rats following treatments by three “classic” peroxisome
proliferator compounds and contrasted with treatment with phenobarbital, a barbituate
with a different mode of action, and D-mannitol, a negative control. The results were
subjected to various forms of data analysis to extract meaningful gene expression pattern
relationships. ArraySuite statistical analysis software selects outlier genes based on
confidence intervals computed from the distribution of al ratio outlier values. Candidate
outlier genes are statistically validated in the NMC MicroArray Project System (MAPS)
by using a multinomial distribution to determine the probability of identifying random
outliers in replicate experiments. An overview of compiled validated outlier genes
reveals a general differential gene expression relationship between the peroxisome
proliferators when data points are ranked according to the Wyeth 14,643 treatment ratio
outlier values. Pair-wise comparisons of differentially expressed genes clearly
demonstrate strong correlation (R > +0.8) between independent replicate biological
samples, good correlation (R > +0.5) between peroxisome proliferators and little
correlation (R < +0.4) between the peroxisome proliferators and phenobarbital. Finally,
two-dimensional hierarchical cluster analysis partitions genes with associated mechanistic
pathways into highly correlated nodes (R > +0.8) that are indicative of specific

differential signature patterns that are associated with peroxisome proliferator treatments.



M ethodology
We investigated the gene expression profile of various toxicants using microarray
technology with a rat chip containing ~1700 cDNA clones. Details of the protocols and
analysis software used can be found on the NIEHS Microarray Center (NMC) web site at
http://dir.niehs.nih.gov/microarray.

Sprague Dawley male rats (3 per compound) were exposed to toxicants for 24hrs. or 2
weeks. Doses of each compound for both time points were as follows:

Clofibrate 250 mg/Kg/day

Wyeth 14,643 250 mg/K g/day

Gemfibrozil 100 mg/Kg/day

Phenobarbital 120 mg/kg/day

D-mannitol 500 mg/K g/day

RNA Samples were prepared from extracted livers of animals exposed to the compounds
and labeled with fluorescent molecules. cDNAs made from each RNA sample were
hybridized in triplicate to rat microarray chips. A pooled sample, prepared from livers of

untreated male rats, was used as a control in al hybridizations.

Scanned images were processed and analyzed using IPLab software with ArraySuite
extensions and data was archived in our internal MicroArray Project System (MAPS)
database. Spotfire Pro, Cluster, and TreeView software were used to further analyze the

gene expression data.
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Procedure Overview
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ARRAYSUITE SOFTWARE: Order of Operations
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Data Collected from Two-Color Hybridizations
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Statistical Analysis of Data Using ArraySuite
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Target Intensity and Pixel Size
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Probability of Random Outliers

1700 genes
Triplicate experiments (95% confidence)

Times flagged by chance Probability Expected #
0 0.85738 1482
1 0.13538 234
2 0.00713 12
3 0.00013 0

Quadruplicate experiments

Times flagged by chance Probability Expected #
0 0.81451 1407
0.17148 296
0.01354 23
0.00048 1
0.00001 0

Probabilities computed using a binomial distribution

P(Y=yinp) = () )P (@-p) ™ y=012..r
| ee Bennett, NIEHS




Correlation Between Animals
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Correlation Between Compound Treatments

O Scatter Plot
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Finger Print “ Bar Code” Comparison of Ratio Outliers
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Hierarchical Cluster Analysis of Ratio Outliers
from the24hr Treatment
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Hierarchical Cluster Analysis of Ratio Outliers
from the Two-Week Treatment

C, Clofibrate; W, Wyeth 14,643; G, Gemfibrozil; P, Phenobarbital, D, D-mannitol



Hierarchical Cluster Analysis of Ratio Outliers

from 24hr and Two-Week Treatments
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Cluster Nodes of Genes with Similar Biological Function

24 hr 2 weeks
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Conclusions

Using microarray technology and toxicology we distinguished between
different classes of compounds such as peroxisome proliferators and
phenobarbital through differences in their respective gene expression
profiles.

Using bioinformatics tools to pair-wise compare and cluster gene expression
data we observed highly correlated subsets of genes that are consistently
differentially expressed at the two time points for the same compound. The
genes may be part of a time-dependent gene expression profile associated
with the respective compound.

Our genomics data is in agreement with the histopathology observed in the
treated animals. We observed the up-regulation of structural genes such as
tubulin in samples where liver enlargement was reported in the animal.

Using bioinformatics and genomics we better understand the feasibility of
predicting the potential toxicity of an unknown compound under the
working hypothesis outlined.



Work in Progress

The NIEHS Microarray Center and Boehringer Ingelheim Pharmaceuticals
are in the initial stages of treating additional rat animal models as well as
other organisms with compounds at multiple doses and time points for
further detailled analysis of toxicant induced differential changes in
microarray gene expression. It is also the interest of the collaboration to
investigate toxicant signature patterns of genes in other tissues and organs
and to use bioinformatics and proteomics to determine protein level changes
In response to toxicant treatments.

The NIEHS Microarray Center is currently implementing an Oracle version
of publicly available ArrayDB to provide users web based access to analyze
microarray images and integrate processed gene expression data with
internal and external biological resources. There is also a vast amount of
interest in developing a toxicogenomics database as a central repository for
storage and access to toxicological microarray gene expression data to gain
heuristic knowledge for toxicant hazard identification, characterization, and
predictive risk assessment.

Plans are currently underway to obtain and develop other bioinformatics,
statistical, and computational biology software and methodologies such as
principal component analysis (PCA), support vector machines (SVM), self
organizing maps (SOM), genetic networks, reverse engineering and
hierarchical clustering for higher-order analysis of multi-variate microarray
gene expression data.



